GAPointNet: Graph attention based point neural network for exploiting local feature of point cloud

نویسندگان

چکیده

Abstract Exploiting fine-grained semantic features on point cloud data is still challenging because of its irregular and sparse structure in a non-Euclidean space. In order to represent the local feature for each central that helpful towards better contextual learning, max pooling operation often used highlight most important region. However, all other geometric correlations between corresponding neighbourhood are ignored during operation. To this end, attention mechanism promising capturing node representation graph-based by attending over neighbouring nodes. paper, we propose novel neural network analysis, GAPointNet, which able learn representations embedding graph within stacked Multi-Layer-Perceptron (MLP) layers. Specifically, different weights center efficiently exploit features. We also combine with signature generated our fully extract structures enhance robustness. The proposed GAPointNet architecture tested various benchmark datasets (i.e. ModelNet40, ShapeNet part, S3DIS, KITTI) achieves state-of-the-art performance both shape classification segmentation tasks.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local Spectral Graph Convolution for Point Set Feature Learning

Feature learning on point clouds has shown great promise, with the introduction of effective and generalizable deep learning frameworks such as pointnet++. Thus far, however, point features have been abstracted in an independent and isolated manner, ignoring the relative layout of neighboring points as well as their features. In the present article, we propose to overcome this limitation by usi...

متن کامل

Graph Cut Based Point-Cloud Segmentation for Polygonal Reconstruction

The reconstruction of 3D objects from a point-cloud is based on sufficient separation of the points representing objects of interest from the points of other, unwanted objects. This operation called segmentation is discussed in this paper. We present an interactive unstructured pointcloud segmentation based on graph cut method where the cost function is derived from euclidean distance of point-...

متن کامل

A novel method for locating the local terrestrial laser scans in a global aerial point cloud

In addition to the heterogeneity of aerial and terrestrial views, the small scale terrestrial point clouds are hardly comparable with large scale and overhead aerial point clouds. A hierarchical method is proposed for automatic locating of terrestrial scans in aerial point cloud. The proposed method begins with detecting the candidate positions for the deployment of the terrestrial laser scanne...

متن کامل

On the Effectiveness of Feature-based Lidar Point Cloud Registration

LIDAR systems have been regarded as novel technologies for efficiently acquiring 3-D geo-spatial information, resulting in broad applications in engineering and management fields. Registration of LIDAR point clouds of consecutive scans or different platforms is a prerequisite for fully exploiting advantages of afore-mentioned applications. In this study, the authors integrate point, line and pl...

متن کامل

Feature enhancing aerial lidar point cloud refinement

Raw aerial LiDAR point clouds often suffer from noise and under-sampling, which can be alleviated by feature preserving refinement. However, existing approaches are limited to only preserving normal discontinuous features (ridges, ravines and crest lines) while position discontinuous features (boundaries) are also universal in urban scenes. We present a new refinement approach to accommodate un...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Neurocomputing

سال: 2021

ISSN: ['0925-2312', '1872-8286']

DOI: https://doi.org/10.1016/j.neucom.2021.01.095